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Dynamical Trajectories of Simple Mechanical
Systems as Geodesics in Space with an Extra
Dimension
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Jacek Guzik1
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We show the advantages of representing the dynamics of simple mechanical
systems described by a natural Lagrangian, in terms of geodesics of a Riemannian
(or pseudo-Riemanni an) space with an additional dimension. We demonstrate
how general trajectories of simple mechanical systems can be put into one-to-
one correspondence with the geodesics of a suitable manifold. Two different
ways in which the geometry of the configuration space can be obtained from a
higher dimensional model are presented and compared: (1) by a straightforward
projection, and (2) as a space geometry of a quotient space obtained by the action
of the timelike Killing vector generating a stationary symmetry of a background
space geometry with an additional dimension. The second model is more
informative and coincides with the so-called optical model of the line-of-sight
geometry. On the base of this model we study the behavior of nearby geodesics
to detect their sensitive dependence on initial conditionsÐ the key ingredient of
deterministic chaos. The advantage of such a formulation is its invariant character.

1. DYNAMICAL TRAJECTORIES OF SIMPLE MECHANICAL
SYSTEMS AS GEODESICS IN SPACE WITH AN EXTRA

DIMENSION

Let us consider a simple mechanical system, i.e., a system described by

the natural Lagrange function
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+ 5
1

2
gijqÇ

iqÇ j 2 V (q), i, j 5 1, . . . , n (1)

where q i are local coordinates on the configuration space } that carries a
metric g 5 [gij ] defined by the kinetic energy3 T 5 1/2gijqÇ

iqÇ j;V (q) is a C `

real function of coordinates q i. We assume that the Lagrange function (1)

does not depend on the time variable t (also called mechanical time). Systems

(1) with a positive- (or negative-) definite metric g will be called classical

mechanical systems (Szydlowski, 1994; Szydlowski et al., 1996), whereas

those with an indefinite metric will be called relativistic mechanical systems
(Szydlowski, 1997).

Table I illustrates that, in applications to general relativity and cosmology,

we need simple relativistic systems (SRS) where the kinetic energy form is

indefinite with the Lorentz signature.

The theory of SRS is still in statu nascendi, and the situation in this
field is analogous to that which once compelled mathematicians to investigate

spaces with Lorentz metrics.

In the generic situation all models from Table I exhibit a complex

behavior of trajectories in phase space. In the class of homogeneous cosmolog-

ical models there is an important class of Mixmaster models (Bianchi IX for

n1 5 n2 5 n3 5 1 and Bianchi VIII for n1 5 n2 5 2 n3 5 1) with complex
behavior. Moreover, there are numerical and analytical arguments which

confirm that this type of behavior is typical for the very early stage of the

universe. Unfortunately, it is difficult to decide whether the Bianchi IX model

is chaotic in the precise sense (Szydlowski and Krawiec, 1996; Szydlowski

and Szczesny, 1994). The problem is strictly connected with an adequate

understanding of chaos in the special contexts of general relativity and
cosmology.

The Hamiltonian function for system (1) is of the form

*( p, q) 5
1

2
g a b p a p b 1 V(q) (2)

p a 5 g a b qÇ b (3)

General relativity applications allow us to consider only the zero energy

level, i.e.,

* 5 0 Û gijqÇ
iqÇ j 5 2 2V(q) (4)

Therefore, trajectories of the system in TRN with the coordinates (q a , qÇ a ) are

situated in the domain given by

3 Throughout this paper we use the convention that a repeated index indicates summation unless
stated otherwise. Latin indices take values 1 to n.
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Table I. Examples of Simple Relativistic System Whose Trajectories in Phase Space

Show Complex (Chaotic) Behavior

Mechanical system Hamilton (Lagrange) function Remarks

Friedmann±Robertson± * 5 1±
2
( 2 p 2

1 1 p 2
2) m 5 const (Calzetta and El

Walker cosmology cou- Hasi, 1993)
1 1±2 ( 2 q 2

1 1 q 2
2 1 m 2q 2

1q
2
2)pled to real, free massive

scalar field 5 0

Friedmann±Robertson± * 5 1±2 ( 2 p 2
a /m 2

p 1 p 2
f ) m, mp , k 5 const (Blanco et

Walker model with con- al., 1995; Calzetta and
1 1±

2
f 2(m 2V(a) 1 k 2)

formally coupled massive, Gonzales, 1995)

real self-interacting sca-

lar field

Friedmann±Robertson± * 5 1±4 ( p2
1 2 p 2

2) 1 1±4 (q 2
1 2 q 2

2) q1 1 q2 $ 0, b 5 const

Walker model with (Hawking and Luttrell,
1 (q 2

1 /8 b )( 2 q1 1 q2)
2

squared terms in action 1984)

Bianchi IX cosmological * 5 2 ( 3
i , j pi pj 2 ( i p2

i (Bogoyavlenski, 1976; Bie-

model as a perturbed siada and Szydlowski,
1 2 ( 3

i , j exp(qi 1 qj)Toda lattice system 1991)

2 ( 3
i 5 1 exp(2qi)

Multidimensional general- ni 5 0, 6 1 (Szydlowski
* 5

2

n 2 1
P n

i 5 1 qi{2 ( n
i , j pi pjqi qjization of models of Bianchi and Pajdosz, 1989)

class A 3 BD, where BD is
2 (n 2 2) ( n

i 5 1 p 2
i q

2
i }D- dimensional compact,

homogenous space, D 5
1

1

4
( P n

i 5 1 qi)
1 1 g {(q1q2q3)

2 1n 2 3

3 [2 ( n
i , j ni njqi qj

2 ( n
i 5 1 n 2

i n 2
i ] 1 . . .}

Bianchi cosmological mod- q1 } a 2
i , where ai is a three

* 5
1

(q1q2q3)
(1 2 g )/2 (T ( pi qi)els with the ideal fluid with scale factor in different

the equation of state p 5 main directions; g 5 const;

( g 2 1) r ni 5 0, 6 1 for different Bian-1
1

4
V (qi))

chi models (Bogoyavlenski

and Novikov, 1973)
T( piqi) 5 2 ( 3

i , j pi pjqi qj

2 ( 3
i 5 1 p2

i q
2
i

V (qi) 5 2 ( 3
i , j ni njqi qj

2 ( 3
i 5 1 p2

iq
2
i
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Table I. Continued

Mechanical system Hamilton (Lagrange) function Remarks

Friedmann±Robertson± g, p 5 const; f is a scalar
* 5 N H 2

1

4a 2 p 2
aWalker model with non- field, V ( f ) is the potential

minimally coupled scalar of a scalar field, a is a scale

field factor, j is a coupling con-
1

1

4a 3 2 12 j
p2

j 2 U (a, f ) J stant (Feinberg and Peleg,

1995)

U (a, j ) 5 a 2 g 2a 3

2 p 2a 3V 1 j
p a 6 j 2

2 6 j a 1 2 12 j j 2

Charged particle in uniform a is the amplitude of a wave,
+ 5

1

2
p 2

0 2
1

2
p 2

1magnetic field and lin- v is the angular frequency

early polarized gravita- of a wave, V is the Larmour

tional wave angular frequency of a2
1

2

(gt)
2

1 2 a sin[ n (x 2 2 x 0)] charged particle, n 5 w / V

[
1

2

General relativity with the g 5 det g a b (de Witt, 1967;
* 5

1

2
G AB P A P B 2 ! g3R

scalar field in ADM Misner et al., 1973; Arnowitt

canonical formulation et al., 1962)

1
! g

2 F P 2
f

s
g a b - a f - b f

1 V ( f ) G
The motion of a test of parti- m , n 5 0, 1, 2, 3; m is the

* 5
1

2
g m n p m p n 5 2 m 2

cle or photon in space- mass parameter(m 5 0 for

time } of general photons), ds2 is the metric of

relativity spacetime with Lorentzian

signature

Cosmological models with (Kamenshchik et al., 1996)
+ 5

m 2
p

16 p
(6a ( 2 aÇ 2 1 1) 2 L a 3)the complex scalar self-

interacting inflation field
1 3 j a ( 2 aÇ 2 1 1)x 2

nonminimally coupled

to gravity

2 6 j aÇ xÇ a2x 1
1

2
xÇ 2a 3

2
a 2

2a 3z 2 2
1

2
m 2x 2a 3

2
1

41
l x 4a 3
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V 5 {(q a , qÇ a ) P R2N: gijqÇ
iqÇ j 5 2 2V(q)}

The Lagrange±Euler equations with Lagrangian (1) have the form

gijqÈ
j 1 [ jk, i]qÇ jqÇ k 1

- V

- q i 5 0, (5)

where [ jk, i] is the Christoffel symbol of the first kind, namely

[ jk, i] 5
1

2 1 - gji

- q k 1
- gki

- q j 2
- gik

- q i 2
These equations admit E 5 T 1 V(q), as a first integral.

Following Eisenhart (1929), the trajectories of simple mechanical sys-

tems correspond to the geodesics of a suitable higher dimensional space

endowed with the metric

ds2 5 gij dqi dq j 1 A (q k) du2 [ g a b dq a dq b ; a , b 5 1, . . . , n 1 1

(6)

where we denote qn 1 1 5 u. The correspondence mentioned above is one-to-

one, i.e., expressions for trajectories are the same as those for geodesics of

the metric (6). It is assumed that A does not depend on u. The requirements

that guarantee the correspondence are the following:

t 5 as (7)

1

2A
5 V 1 b (8)

1

a 2 5 gijqÇ
iqÇ j 1

1

A
5 2(E 1 b) (9)

where a Þ 0 for nonnull geodesics, and b is a constant which should be

chosen consistently with the Hamiltonian constraint * 5 E. The additional

dimension for nonnull geodesics reveals the relation of the variable u to the
Hamilton principle

u 5
1

2

t

a 2 2 # + dt 1 b 5 2 # V dt 1 2bt (10)

In the case of null geodesics the parameter u assumes the following form:

u 5 2 # + dt (11)

Formally, the case of null geodesics can be obtained if we put a 5 ` . For

a simple relativistic system E 5 0, and, in the case of nonnull geodesics,

we have
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b 5
1

2a 2 , E 5 0, a 5 const (12)

If gÅ and g denote the determinants of [g a b ] and [gij ], respectively, we have

gÅ 5 Ag (13)

It is worth mentioning that for simple classical mechanical systems, for
which g is positive-definite, we obtain that the metric (6) has the Lorentzian

signature if V 1 b , 0, and the Euclidean signature if V 1 b . 0. The

signature changes if (V 1 b) changes sign, and thus the metric (6) is singular

if V 1 b 5 0. We obtain, in general, the relation

ds2 5 2(E 1 b) dt2 5 a 2 2 dt2

which informs us that the timelike tangent vector to the trajectory u is unique,

|u|2 5 g m n
dq m

ds

dq n

ds
5 1

Therefore, the Eisenhart procedure reduces the problem to the study of space-

like or null geodesics.

According to general relativity, trajectories of massive particles and
photons in gravitational fields are, from the very beginning, timelike or null

geodesics in a spacetime with a Lorentzian metric. Here we show that also

trajectories of simple mechanical systems with V 1 b , 0 can be represented

as geodesics in a fictitious `spacetime’ with Lorentzian signature (the variable

u is treated as time variable). Instead of studying trajectories, one can equiva-

lently consider the problem of motion of a fictitious particle in a stationary
spacetime manifold without the boundary, and conversely the problem of

motion of test particles or photons in spacetime can be studied as a simple

mechanical system.

2. TRAJECTORIES OF SIMPLE MECHANICAL SYSTEMS
FROM THE MOTION OF A FICTITIOUS PARTICLE IN A
STATIONARY BACKGROUND

Results of the previous section show that the study of a simple mechanical

system can be translated into the study of a test particle and photon motion

in spacetimes of general relativity. There are several advantages of doing so.

The majority of problems can be reduced to problems of geodesic motions,
for which the notion of differential geometry on manifolds often gives more

transparent and deeper insight into the underlying symmetry. Moreover, a

geodesic motion also can be formulated as a Hamiltonian system, and all the

techniques of searching for integrals developed for Hamiltonian dynamics
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can be used to obtain integrals which do not admit an obvious geometrical

interpretation.

On the metric manifold, the metric (6) (not necessary Riemannian) is
written in condensed form, and then the geodesic motion is determined by

the Hamiltonian

* 5
1

2m
g (P, P) 5

1

2m
g m n P m P n (14)

which is equivalent to the geometrical equations of motion in terms of
covariant derivatives.

Let us consider a particle trajectory with the momentum components

P m in the spacetime manifold with coordinates x n (Greek indices run from 0

to 3, and x 0 5 u, x i 5 q i). The corresponding mass parameter m is given

by the condition

m 2 5 2 g m n P
m P n (15)

where m represents the rest mass.

Henceforth we assume that the spacetime } with Eisenhart metric has

the Lorentzian signature ( 2 1 1 1 ) (the minus sign refers to the `time’ u
direction). The results for the Euclidean signature can be reinterpreted in a

simple way. Any trajectory x m ( l ) may be conveniently regarded as an integral

curve of the equations

m
dx m

d l
5 P m 5 g m n P n (16)

where l is an affine parameter along geodesics, and P m is determined from

equation (15) as a function of x n .

Without any loss of generality we can consider only the case of a
stationary (static) metric (6). This metric is characterized by the existence

of a timelike Killing vector K m . Thus, it is possible to choose a frame of

reference with a fictitious time coordinate

x 0 5 u (17)

with respect to which we have K m 5 d m
0 . This means that the corresponding

partial derivative of the metric is zero, i.e., - g m n / - x 0 5 0. Thus, the vector

field P m is stationary, i. e., - P m / - x 0 5 0. This allows us to include directly

a projected trajectory given by

m
dxi

d l
5 P i (18)

into the n-dimensional quotient manifold }/&, where & is a group of `time’

transformations u ® u 1 D u. The coordinate Killing vector ( - / - u), the
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generator of the infinitesimal group of isometry, is associated with the action

of this group.

This quotient manifold has an induced positive-definite metric with
components g ij which can be read out from the full (n 1 1)-dimensional

metric by decomposing it into the form

ds2 5 g00 du2 1 2g0i du dxi 1 g ij dxi dx j

5 g00 du2 1 g ij dxi dx j

5 g00 du2 1 dl 2

This is equivalent to setting

g00 5 A, g0i 5 0, gij 5 g ij

Now, let us introduce a new conformally modified positive-definite

metric

dlÃ2 5 gÃ
ij dxi dx j (19)

on the quotient }/& space by setting

dlÃ2 5
1 1 hg00

2 g00

dl 2 (20)

where h 5 const. For a null geodesic, h 5 0; for timelike geodesics, h . 0;
and h , 0 for a spacelike one. Our aim is to find a one-to-one correspondence

between the motion of particles or photons in the spacetime background and

trajectories of a simple mechanical system. Thus, it is natural to compare

the above metric with the Jacobi metric; then we obtain

1 1 hg00

2 g00

5 2(E 2 V ) (21)

The metric (20) is a positive-definite metric on the quotient space }/& of

dimension n. The constant h in (20) is related to the proper energy defined

as the total energy of the particle per mass E 5 %/m. Notice that u is a cyclic
coordinate for the system with Lagrangian + 5 (m /2) (ds/d l )2. Thus, the

corresponding momentum has to be conserved

P0 5
- +

- (du/d l )
5 m g00

du

d l
5 2 mE 5 2 m

1

! h
(22)
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This implies the relation between h and E

% 5 mE 5 m
1

! h
® h 5 E 2 2 (23)

From (20), (21), and (9) we obtain

h 5 2 a 2 2 5 E 2 2 (24)

Let us notice that in the Eisenhart geometry we study spacelike geodesics

and thus h , 0 or E is pure imaginary. If a ® ` , i.e., for the case of null
geodesics, we have b 5 2 E and h 5 0. Relations (23) and (24) establish the

one-to-one correspondence between the Jacobi geometry of simple classical

dynamical systems and the geometry of fictitious particles moving in the

spacetime with the Eisenhart metric.

In the special case h 5 0, the metric (20) coincides with the so-called

Fermat or optical metric. Abramowicz et al. (1988; Abramowicz and Pra-
sanna, 1989) studied the role of this optical reference geometry for describing

test particle trajectories in conformally projected three-space with metric (20)

for h 5 0. With such a projection in the static spacetime null lines of

the four-dimensional manifold correspond to the three-dimensional space

geodesics. One can easily see this fact considering Fermat’ s principle in its

relativistic formulation (Misner et al., 1973). This principle states that if }
5 R 3 S is a static spacetime with the metric g 5 g00 dt2 1 gij dx i dx j,

where S is a 3-manifold of constant time with Riemannian metrix (3)g, and

g00 , 0 is a smooth function. Neither function g00 nor metric (3)g depends

on t. Thus, the null geodesics of (}, g), when projected onto S , are precisely

the Riemannian geodesics of the 3-geometry

1 o ,
(3)g

2 g00 2 (25)

and, furthermore, the affine parameter l (i.e., the arc length) along the

projected geodesics in the g metric is precisely the static time coordinate t
measured along the null geodesics in (}, g). The above principle has a simple
generalization to the case of nonnull geodesics (Szydlowski, 1996).

On the other hand, we can regard the variational principle in the

reduced space

d # dlÃ2 5 0 Û d # n 2(x 1, . . . , x n) dl 2 5 0 (26)

as the variational principle in geometrical optics considering the problem of

a light beam in an inhomogenous medium characterized by the refraction

factor n (x j ) in space with metric dl 2. Therefore, instead of studying the
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problem of geodesics (null, spacelike, or timelike) in the Eisenhart metric,

one can equivalently investigate the problem of geodesics in a Riemannian

or pseudo-Riemannian manifold with metric (20). The possibility of such a
reduction appears as a consequence of `the static form’ of the spacetime

metric. From the mathematical point of view, the reduced space corresponds

to the conformally adjusted quotient space metric.

3. CORRESPONDENCE OF CLASSICAL MECHANICAL
SYSTEMS AND GEODESIC MOTION IN
SPACETIMEÐ EXAMPLES

As the most obvious illustration, let us consider how the type of geometri-

cal representation introduced above works in the simplest spherical example,
namely that of the Schwarzschild solution, whose standard coordinate expres-

sion is (Abramowicz et al., 1988; Abramowicz and Prasanna, 1989)

ds2 5 g00 dt2 1
1

2 g00

dr 2 1 r 2 d V 2 (27)

with g00 5 2 (1 2 2M /r). Here M is the total mass of the central spherical

object, and d V is an infinitesimal element of solid angle.

There exist two different ways in which the space geometry can be

obtained from the metric (27). Direct projection into the t 5 const hypersurface

(3D) gives the following 3-geometry:

dl 2 5
1

2 g00

dr 2 1 r 2 d V 2 (28)

It will be convenient to replace (28) by an equivalent form

dl 2 5 1 1 1
M

2r 2
2

(dr 2 1 r 2 d V 2) (29)

where the new radial coordinate is defined by the following relation:

r 5 1 1 1
M

2r 2
2

r 5 s r (30)

Now we can look at the conformally rescaled metric (29) as the Jacobi metric
of a certain simple mechanical system. Comparison of conformal factors

gives the following expression for the potential function:

V 5 2
1

2

M

r
2

1

8

M

r 2 (31)

It is worth noticing that in a direct projection, we just neglect information

about the spacetime which is contained in the (00) component of the metric.
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An alternative to the directly projected 3-geometry (and n-geometry in

general), the model representing geodesics of spacetime as geodesics of the

quotient Riemannian space (20) (Abramowicz et al., 1988; Abramowicz and
Prasanna, 1989), is more dynamically informative. For simplicity, let us

consider the case of null geodesics in spacetime (h 5 0); then the metric

element on quotient space has the form

dl 2 5 s 2 (d r 2 1 r 2 d V 2) (32)

where the new, so-called optical conformal factor s is given by

s 5 1 1 1
M

2r 2
3

1 1 2
M

2r 2
2 1

(33)

Comparing (33) with (30), we can see the basic difference in both models

of spatial geometry. As mentioned in previous sections, there exists a one-

to-one correspondence between the metric (27) and a simple mechanical
system. Now we would like to find it. Comparing (27) with Eisenhart’ s

metric, we obtain

ds2 5 2
(1 2 M /2r)2

(1 1 M /2r)2 dt2 1 1 1 1
M

2r 2
2

d s 2 (34)

and

2
(1 2 M /2r)2

(1 1 M /2r 2 5
1

2(V 1 b)
(35)

where d s 2 is a flat metric in 3D. For simplicity, we choose b 5 0 and then

the corresponding mechanical system has the following Lagrange function:

+ 5
1

2 1 1 1
M

2r 2
2

d ij
dqi

dt

dq j

dt
1 1

(1 1 M /2r)2

2(1 2 M /2r)2 (36)

Thus

+ 5
1

2 1 1 1
M

2r 2
2

H s ij
dqi

dt

dq j

dt
1

1

(1 2 M /2r)2 J (37)

The Lagrangian (37) can be treated as a Lagrangian of a classical system
with the lapse function N (Schmidt, 1996)

N 5 1 1 1
M

2r 2
2
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and

+ 5 N 2 1 12 gijqÇ
iqÇ j 2 V(q) 2

where (q 1, q 2, q 3) 5 (r, u , f ). Reparametrizing time according to the rule

dt 5 N d t

we obtain the Lagrangian in the form

+ 5
1

2
d ij

dgi

d t
dq j

d t
2 VÄ (q)

where

VÄ (q) 5 2
1

2 1 2r 1 M

2r 2 M 2
2

For small M /r the potential VÄ takes the form of the potential function for

the relativistic Kepler problem (Thirring, 1977).

Now, we will go in the opposite direction: we take a simple mechanical
system and we derive from it a four-dimensional geometry. As a nontrivial

example we chose a rigid body with a fixed point (Arnold et al., 1988). This

mechanical system is important because for more than 200 years it has

attracted the attention of the most prominent scientists of the epoch. The

kinetic energy of the problem has the form

T 5
1

2
(A v 2

1 1 B v 2
2 1 C v 2

3) (38)

where (A, B, C ) are the body’ s principal moments of inertia, and ( v 1, v 2,

v 3) is the total angular velocity of the body in the principal axis frame. As

Lagrangian coordinates we can take the classical Euler angles (q 1, q 2, q 3)

5 ( f , u , c ). In terms of these variables the kinetic energy has the form

T 5
1

2
gij

dqi

dt

dq j

dt
(39)

where

g11 5 A 1 (C 2 A ) cos2 q 2 1 (B 2 A ) sin2 q 2 cos2 q 3

g12 5
1

2
(A 2 B) sin q 2 sin 2q 3

g13 5 C cos q 2
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g22 5 B 1 (A 2 B) cos2 q 3

g33 5 C

Usually the potential of the external field is assumed to have the form

V 5 V (x 1, x 2, x 3)

where

x 1 5 sin q 2 sin q 3, x 2 5 sin q 2 cos q 3, x 3 5 cos q 2

In the most important caseÐ the heavy rigid topÐ the potential has the form

V 5 li x
i

where li are real parameters. For this choice of V there are only three points

in parameter space (A, B, C, l1, l2, l3) for which the Lagrangian system + 5
T 2 V is integrable; these are the Euler, Lagrange, and Kowalewsky cases,

respectively. It seems that integrable cases of this simple mechanical system

should give rise to specific symmetries of the corresponding space with the
respective Eisenhart metric. In general, this problem is open. It will be

interesting to identify the type of the obtained Eisenhart space-time. Results

of our investigations of these problems will be published elsewhere.

4. APPLICATIONSÐ A NEW MODEL OF MINISUPERSPACE

There are some important reasons for studying the local instability
trajectories of simple mechanical systems in terms of geodesics.

The specific property of general relativity is its gauge freedom. In

particular, the property of sensitive dependence on initial conditions (hereafter

SDIC for short) should be invariant with respect to time reparametrization.

Additionally, as is well known, the stability in the Lyapunov sense (or bound-

edness) is not invariant with respect to rescaling of the time variable.
The full information about the local behavior of geodesics can be

obtained from only the internal geometry, without integrating the equations

of motion. Thus, this information has an invariant character from the very

beginning (Szydlowski and Szczesny, 1994). The property of local instability

of geodesic congruence can be expressed in terms of invariants of the internal
geometry such as the Riemannian tensor and sectional curvature. If the system

is locally unstable, then the nearby geodesics diverge exponentially, which

implies the property of SDIC. For the Eisenhart geometry the sign of the

sectional curvature can be used as a criterion of local instability (Szydlowski

and Szczesny, 1994)
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Ku;n(x) , 0

This means that the sectional curvature at any point and in any two-plane

which is determined by two-directions u Ù v is negative. After averaging the
sectional curvature over all two-directions the above criterion takes a very

simple form (Szydlowski and Szczesny, 1994; Szydlowski, 1994)

R , 0

where R is a Ricci scalar for the Eisenhart metric. In our case, other theorems
concerning the global behavior of geodesics on a smooth manifold can be

adopted.

In many attempts to quantize general relativity, the space of all solutions

of Einstein’ s equations, which are represented as geodesics, plays the funda-

mental role (Szydlowski and Szczesny, 1994). This space is called superspace.
We will concentrate only on some subclasses of superspace, namely on the

minisuperspace of the homogeneous cosmological models (for the corres-

ponding Hamiltonian see case 9 in Table I). Misner (1972) constructed the

minisuperspace using the Jacobi±Maupertuis geometry implicitly (Szydlowski

et al., 1996). Unfortunately, such a geometrical formulation of dynamical

behavior faces some difficulties as a consequence of the degeneration of the
Jacobi metric on the boundary of space admissible for motion (Misner, 1972).

The approach based on Eisenhart’ s metric seems to be more attractive in this

context. For vacuum cosmological models the Eisenhart metric takes the form

ds2 5
1

2
dgij dgmn gimgjn 1

a 2

2V (a 2 1 1)
du2 (40)

where the line element of the (n 1 1)-dimensional universe has the form

ds2 5 2 N 2 dt2 1 gij dxi dx j (41)

and Misner’ s decomposition metric of the spacetime background is

gij [ e2 a (e2 b )ij 5 e2 a gij (42)

where V is a potential function in the ADM formulation of general relativity,

and N is a lapse function.

To find the respective potential function we will introduce the ADM
formalism (Arnowitt et al., 1962). The first step is to split the (n 1 1)-

spacetime metric g m n into its space and time components

g m n 5 1 Ni N
i 2 N 2 Ni

Ni gij 2 (43)

where m , n run from 0 to n, and i, j from 1 to n. The Ni is called the shift
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function. It is always possible to choose Ni 5 0, and in this gauge the line

element is given by formula (41). We shall use the Einstein±Hilbert action

in the standard form

SADM 5 # ! gNR dx(n 1 1) (44)

where g 5 det(gij ), and R is the (n 1 1)-dimensional Ricci scalar (we assume

16 p G 5 c 5 1). It is convenient to rewrite the Lagrangian function in (44)

in terms of metric components and their velocities as canonical variables

+ADM 5
1

4N
! g(g ijg kl 2 g ikg jl)gÇ ikgÇ jl 1 NP (45)

with P being the spatial curvature scalar calculated from gij. It will be helpful

to introduce Misner’ s decomposition (Misner et al., 1973) of the metric (44)

with b ab a traceless n 3 n matrix and g 5 e2n a . We assume that a is a

function of time only; then, finally, the Lagrangian takes the form

+ADM 5
1

4N
gÇ acgÇ bdg

abgcd 2
n (n 2 1)

N
a
Ç 2 1 Ne2n a P (46)

where N 5 e 2 n a N. From its variation with respect to N we get the zero±zero

component of the Einstein equations, which in turn gives us the energy

function in the form

* 5
1

4N2 gÇ acgÇ bdg
abgcd 2

n (n 2 1)

N 2 2 e 2n a P 5 0 (47)

At this point we will fix the gauge by assuming N 5 1. Then we obtain the

Lagrange equations with Lagrangian (46), which is formally identical to that

of a point particle moving inside the potential in the form V 5 e 2 2n a P. This
curvature term is a well-defined object in terms of the metric components

(Landau and Lifshitz, 1971)

V 5 e 2 2n a P 5 e 2(n 2 1) a H 1

2 o
a Þ b Þ c

(C a
bc e b a 2 b b 2 b c

)2 (48)

1 CaabC
a
bce

b a 2 2 b b 2 b c
1 o

a
D ae 2 b a 6

where C a
bc are the structure constants which define the isometry group of

spacelike sections, e2 b 5 diag(e2 b 1
, . . . , e2 b n

), and ( a b a 5 0. Finally, the

metric (40) with a potential function in the above form constitutes the new
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minisuperspace of all homogeneous cosmological models [called Bianchi

models (Landau and Lifshitz, 1971)], which are now represented as geodesics

in a space with one additional dimension. In formula (40) the constant b
should be chosen such that relation (9) is consistent with the Hamiltonian

constraint. If the potential function is neither positive nor negative, then the

space with Eisenhart metric (40) can change signature. Therefore, the dynam-

ics of minisuperspace in our sense can be represented by smoothly joining

geodesics from different domains in the (q i, u) space. The situation is similar to

that which appears in the quantum cosmology where models with a changing
signature are considered. A singularity in the Eisenhart metric appears if V 5
2 b, but it forms a set of (n 2 1) dimensions in (n 1 1)-dimensional space.

Let E 5 0; then reduction of a dynamical system to the problem of

nonnull geodesics leads to b 5 1/2a 2, a 5 const. Therefore, for V ’ 0, the

Eisenhart metric takes the form of the Minkowski metric with the signature

( 2 1 ? ? ? 1 ), whereas in the analogous situation the Jacobi metric 2 | V | h ,
where h 5 diag( 2 1, . . . , 1), is degenerate on the boundary V 5 0 and

produces a singular set of dimension (n 2 1) in n-dimensional configuration

space. Let us remark that for the Bianchi VIII model for which the potential

function is nonnegative, the Eisenhart metric is singularity-free. As it was

pointed out by Misner, the so-called Bianchi IX cosmological model is
represented in Misner minisuperspace by a complicated trajectory which is

asymptotically dominated (for a ® ` ) by three planes forming the faces of

an inverted pyramid [in a , b +, b 2 space (Misner, 1972)]. The potential

function V both in the ADM Hamiltonian formalism of cosmological models,

i.e., in Misner, and in our approach is the same. The disappearance of singulari-

ties in our approach (as we consider the evolution of the universe near the
cosmological singularity), which has been the source of many complications

(Szydlowski and Szczesny, 1994), seems to be very attractive from the point

of view of future applications. There is an analogy between the Kaluza±Klein

approach to the unification of the fundamental forces and our approach to

the minisuperspace concept, namely, in both cases one starts from more

fundamental multidimensional metrics and then physical space (dynamical
trajectories in our case) is obtained via some dimensional reduction procedure.

ACKNOWLEDGMENTS

This work was supported by KBN program no. 2P03D 02211. The

authors are very grateful to Prof. M. Heller for discussion and comments.

REFERENCES

Abramowicz, M. A., and Prasanna, A. R. (1989). Monthly Notices of the Royal Astronomi-

cal Society.



Dynamical Trajectories of Simple Mechanical Systems 1585

Abramowicz, M. A., Carter, B., and Lasota, J. P. (1988). General Relativity and Gravitation ,

20, 1173.

Arnold, V. I., Kozlov, V. V., and Neishtadt, A. I. (1988). Mathematical aspects of classical and

celestial mechanics, in Dynamical Systems III, Encyclopedia of `Mathematical Sciences

3, V. I. Arnold, ed., Springer-Verlag, Berlin.

Arnowitt, R., Deser, S., and Misner, C. W. (1962). The dynamics of general relativity, in

Gravitation: An Introduction to Current Research, L. Witten, ed., Wiley, New York.

Biesiada, M., and Szydlowski, M. (1991). Physics Letters A, 160, 123.

Blanco, S., Costa, A., and Rosso, O. A. (1995). General Relativity and Gravitation , 27, 1295,

Bogoyavlenski, O. I. (1976). Communications in Mathematical Physics, 51, 201.

Bogoyavlenski, O. I., and Novikov, S. P. (1973). Soviet Physics-JETP, 64, 1475.

Calzetta, E., and El Hasi, C. (1993). Classical and Quantum Gravity, 10, 1825.

Calzetta, E., and Gonzales, J. J. (1995). Physical Review D, 51, 6821.

de Witt, B. (1967). Physical Review, 160 , 1113.

Eisenhart, L. P. (1929). Annals of Mathematics , 30, 591.

Feinberg, J., and Peleg, V. (1995). Physical Review D, 52, 1988.

Hawking, S. W., and Luttrell, J. C. (1984). Nuclear Physics B, 247, 250.

Kamenschchik, A. Yu, Khalatnikov, I. M., and Toporensky, A. V. (1996). Physics Letters B,

357 , 36.

Landau, L. D., and Lifshitz, E. M. (1971). The Classical Theory of Fields, Pergamon Press,

Oxford.

Misner, C. W. (1972). In Magic without Magic, J. Klauder, ed., Freeman, San Francisco.

Misner, C. W., Thorne, K. S., and Wheeler, J. A. (1973). Gravitation , Freeman, San Francisco.

Schmidt, H. J. (1996). Journal of Mathematical Physics, 37, 1244.

Schutz, B. (1985). A First Course in General Relativity, Cambridge University Press, Cambridge.

Szydlowski, M. (1994). Journal of Mathematical Physics, 35, 1850.

Szydlowski, M. (1997). The generalized local instability criterion from the geodesic deviation

equation, in Geometry and Nature: In Memory of W. K. Clifford: A Conference on New

Trends in Geometrical and Topological Methods in Memory of William Kingdon Clifford,

American Mathematical Society, Providence, Rhode Island.

Szydlowski, M., and Krawiec, A. (1996). Physical Review D, 53, 6893.

Szydlowski, M., and Pajdosz, G. (1989). Classical and Quantum Gravity, 6, 1391.

Szydlowski, M., and Szczesny, J. (1994). Physical Review D, 50, 819.

Szydlowski, M., Heller, M., and Sasin, W. (1996). Journal of Mathematical Physics, 37, 346.

Thirring, W. (1977). Klassiche Dynamische Systeme, Springer-Verlag, Berlin.

Varvoglis, H., and Papadopolous, D. (1992). Astronomy and Astrophysics, 261 , 664.


